作者单位
摘要
哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
测试了不同水灰比、不同养护龄期水泥石的导热系数,并对比了并联模型、串联模型、Maxwell模型、Mori-Tanaka模型、有效介质理论模型和Self-consistent模型对水泥石导热系数的预测效果。利用分子动力学方法计算了水泥石中各相的导热系数。结果表明:水泥石的导热系数随着养护龄期和水灰比的增大而减小。SC模型适用于不同水灰比和养护龄期水泥石导热系数的计算,其计算结果与试验值的相对误差在0.3%~4.7%之间。Maxwell模型和MT模型可以用于对水灰比较大且养护龄期较长的水泥石的导热系数进行计算。
水泥石 导热系数 水灰比 养护龄期 分子动力学 cement paste thermal conductivity water-cement ratio curing age molecular dynamics method 
硅酸盐学报
2022, 50(2): 466
Author Affiliations
Abstract
1 Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201 800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
The environmental perturbation on atoms is a key factor restricting the performance of atomic frequency standards, especially in the long-term scale. In this Letter, we perform a real-time noise distinguish (RTND) to an atomic clock to decrease the uncertainty of the atomic clock beyond the level that is attained by the current controlling method. In RTND, the related parameters of the clock are monitored in real time by using the calibrated sensors, and their effects on the clock frequency are calculated. By subtracting the effects from the error signal, the local oscillator is treated as equivalently locked to the unperturbed atomic levels. In order to perform quantitative tests, we engineer time-varying noise much larger than the intrinsic noise in our fountain atomic clock. By using RTND, the influences of the added noises are detected and subtracted precisely from the error signals before feeding back to the reference oscillator. The result shows that the statistical uncertainty of our fountain clock is improved by an order of magnitude to 2×10?15. Besides, the frequency offset introduced by the noise is also corrected, while the systematic uncertainty is unaffected.
020.1335 Atom optics 120.3940 Metrology 
Chinese Optics Letters
2017, 15(5): 050201
Yuanbo Du 1,2Rong Wei 1,*Richang Dong 1,2Fan Zou 1,2[ ... ]Yuzhu Wang 1
Author Affiliations
Abstract
1 Key Laboratory of Quantum Optics, Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Science, Shanghai 201800, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
We report a locking mode in which the local oscillator (LO) is locked to an atomic fountain and calibration of the residual frequency drift (RFD). In this running mode, the locked LO outputs a standard frequency signal, and a short-term fractional frequency stability of 2.7×10 13τ 1/2 is achieved. Due to the frequency drift of the LO in free running mode, a systematic frequency bias, or RFD, exists after being locked by the atomic fountain. We analyze and measure the RFD with a value of 3(2)×10 16. A sectionalized post-process method is adopted to calibrate the RFD.
120.0120 Instrumentation, measurement, and metrology 270.0270 Quantum optics 120.3940 Metrology 
Chinese Optics Letters
2015, 13(9): 091201

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!